Vid&Sans bringer læserne i øjenhøjde med nogle af Danmarks skarpeste forskere. Hver uge udvælger vi et læserspørgsmål og sender det videre til en ekspert, der kan give en videnskabelig forklaring.
I denne uge har en læser undret sig over:
- Hvordan navigerer man i rummet?
Svaret kommer fra professor John Leif Jørgensen, leder af DTU Spaces afdeling for Measurement and Instrumentation.
”Der er to problemer med at navigere i rummet, og det er faktisk det samme som i et fly, der flyver i mørke eller tåge. Man har brug for at kende sin position og sin altitude.
Når et fly er lettet, har piloten brug for at kende flyvehøjden og vide, hvor langt det er nået. Det er det, der kaldes flyets position.
Piloten skal også kende attituden. En flyvemaskine kan vende sin næse opad eller nedad – det kaldes i flysprog for pitch og afgør, om flyet er ved at stige eller dale. Næsen kan også vendes mod højre eller venstre; det hedder yaw.
Den sidste del af attituden er roll, for det har selvfølgelig også betydning, om man flyver med maven eller ryggen opad.
Ude i rummet er vi nøjagtigt på samme måde nødt til at kende pitch, yaw og roll, altså fartøjets attitude, og vi skal også kende positionen: Men vi skal bruge nogle lidt andre tricks, end man kan nede i nærheden af Jorden. Instrumenterne skal være meget mere præcise, fordi man kan ramme rigtig meget forkert, når man flyver over så store afstande som ude i rummet.
Helt grundlæggende har vi brug for at kende attituden for at afgøre, om solpanelerne vender mod solen, hvis fartøjet er drevet af solenergi, og om raketmotoren og antennerne peger i den rigtige retning.
Til det bruger vi stjernekameraer. Så længe vi flyver i vores eget solsystem, bevæger stjernerne sig ikke, fordi de er så langt væk. Kameraerne kan genkende alle stjerner hele vejen rundt, og da vi ved, hvordan kameraet er monteret på rumfartøjet, kan vi afgøre, hvordan fartøjet er placeret i forhold til verdensaltet, når det tager et billede.
Det er lidt sværere med positionen – altså hvor vi er henne i rummet.
Mange tror, at vi navigerer i forhold til Jorden, men det dur ikke, for Jorden er jo hele tiden i bevægelse. I stedet bestemmer vi positionen i forhold til vores solsystems tyngdecenter, der ligger tæt på solens overflade. Det er omkring det ligevægtspunkt, alle solsystemets planeter drejer.
For at finde ud af, hvor vores rumfartøj er henne i forhold til tyngdecenteret, sender vi en radarpuls ud til det, og når pulsen når frem, sender fartøjet den retur til jorden. Når vi kender pulsens rejsetid frem og tilbage, kan vi afgøre afstanden til rumfartøjet.
Men vi har også brug for at kende den hastighed, fartøjet bevæger sig med. Det måler vi ved doppler-forskydning, som er det fænomen, man oplever, når man bliver passeret af en ambulance under udrykning; lyden har en højere frekvens, når den kører mod dig, end når den kører væk fra dig.
På samme måde kan vi registrere små ændringer i frekvensen på vores radarpuls og dermed afgøre, hvor hurtigt fartøjet bevæger sig.
Den sidste faktor til at bestemme positionen er bevægelsen, men den er vi nødt til at integrere os til. Vi laver simpelthen en prikkurve over, hvor fartøjet var i forgårs, i går, i dag og igen næste dag.
På den måde kan vi altså holde styr på vores rumfartøjs attitude og position og navigere i rummet. Og vi kan gøre det så præcist, at vi uden problemer kan ramme et mål på 1 kilometers penge på en afstand af 60 millioner kilometer, som er afstanden til Mars.
Og med lidt flere ”luskede” tricks, kan vi faktisk gøre endnu mere præcist, men bestemmelsen af attituden og positionen er det grundlæggende.”
–
John Leif Jørgensen er professor ved DTU Space, hvor han er leder af afdelingen for Measurement and Instrumentation.